Forbidden pairs and perfect graphs

Adam Kabela
joint work with Petr Vrána

We characterize pairs $\{X, Y\}$ of graphs such that all $\{X, Y\}$-free graphs (distinct from C_{5}) are perfect. Furthermore, we present similar characterizations considering all graphs with additional constraints of being distinct from an odd cycle, or being connected, or being of independence at least 3 , or having at least n vertices.

We view the present topic as a follow-up in the study started in [2] and elaborated in [1]. As the main tools, we use the Strong perfect graph theorem [3] and Ramsey's theorem [4].

References

[1] C. Brause, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: On forbidden induced subgraphs for $K_{1,3}$-free perfect graphs, submitted.
[2] C. Brause, B. Randerath, I. Schiermeyer, E. Vumar: On the chromatic number of $2 K_{2}$-free graphs, Discrete Applied Mathematics, forthcoming.
[3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas: The strong perfect graph theorem, Annals of Mathematics 164 (2006), 51-229.
[4] F. P. Ramsey: On a problem of formal logic, Proceedings of the London Mathematical Society 30 (1930), 264-286.

